1/x^2-4=6/x

Simple and best practice solution for 1/x^2-4=6/x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/x^2-4=6/x equation:


D( x )

x = 0

x^2 = 0

x = 0

x = 0

x^2 = 0

x^2 = 0

1*x^2 = 0 // : 1

x^2 = 0

x = 0

x in (-oo:0) U (0:+oo)

1/(x^2)-4 = 6/x // - 6/x

1/(x^2)-(6/x)-4 = 0

1/(x^2)-6*x^-1-4 = 0

x^-2-6*x^-1-4 = 0

t_1 = x^-1

1*t_1^2-6*t_1^1-4 = 0

t_1^2-6*t_1-4 = 0

DELTA = (-6)^2-(-4*1*4)

DELTA = 52

DELTA > 0

t_1 = (52^(1/2)+6)/(1*2) or t_1 = (6-52^(1/2))/(1*2)

t_1 = (2*13^(1/2)+6)/2 or t_1 = (6-2*13^(1/2))/2

t_1 = (6-2*13^(1/2))/2

x^-1-((6-2*13^(1/2))/2) = 0

1*x^-1 = (6-2*13^(1/2))/2 // : 1

x^-1 = (6-2*13^(1/2))/2

-1 < 0

1/(x^1) = (6-2*13^(1/2))/2 // * x^1

1 = ((6-2*13^(1/2))/2)*x^1 // : (6-2*13^(1/2))/2

2*(6-2*13^(1/2))^-1 = x^1

x = 2*(6-2*13^(1/2))^-1

t_1 = (2*13^(1/2)+6)/2

x^-1-((2*13^(1/2)+6)/2) = 0

1*x^-1 = (2*13^(1/2)+6)/2 // : 1

x^-1 = (2*13^(1/2)+6)/2

-1 < 0

1/(x^1) = (2*13^(1/2)+6)/2 // * x^1

1 = ((2*13^(1/2)+6)/2)*x^1 // : (2*13^(1/2)+6)/2

2*(2*13^(1/2)+6)^-1 = x^1

x = 2*(2*13^(1/2)+6)^-1

x in { 2*(6-2*13^(1/2))^-1, 2*(2*13^(1/2)+6)^-1 }

See similar equations:

| 14-3x=2x-11 | | 17.90=45.95-n | | 22=3.14r | | 8z+9-5z=2z+10 | | 2(3x+9)=y | | 0.25x+4=0.66x | | -11x-66=-4x+25 | | -52/12 | | -6x^2+13x+28=0 | | 0=16(80)2+80(80)+96 | | xlog=3.25 | | 3x-20=-19+4x | | -5(n-2)=9-4n | | h=16(80)2+80(80)+96 | | 242800(x)=2942 | | x^2+8x-300=2980 | | 6x-28=-36+8x | | 7r+8s-3(9r-3s)= | | logx=3.25 | | h=-5t^2+20t+8 | | 4y+4y=7y-8 | | x^2+8x-300=1300 | | 40+(-98)+(-98)+(-48)= | | 4n^2=-2 | | (5x+3)(3x^2-11x-4)=0 | | 27/180 | | 3x+8=9x-28 | | (2x/3y^4)^3 | | 5/3c=81/3 | | x^2+8x-300=2820 | | 23-(-20)-3-(-5)+7= | | -36-6x=-10x+44 |

Equations solver categories